Bias-Variance Trade-off, Regularization Machine Learning

Hamid R Rabiee – Zahra Dehghanian Spring 2025

Model complexity: Bias-variance trade-off

- Least squares can lead to severe over-fitting if complex models are trained using data sets of limited size.
- A frequentist viewpoint of the model complexity issue, known as the bias-variance trade-off.

Formal discussion on bias, variance, and noise

- Best unrestricted regression function
- Noise

Bias and variance

The learning diagram: deterministic target

The learning diagram including noisy target

[Y.S. Abou Mostafa, 2012]

- If we know the joint distribution P(x,y) and no constraints on the regression function?
 - cost function: mean squared error

$$h^* = \underset{h:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}_{x,y} \left[\left(y - h(x) \right)^2 \right]$$

$$h^*(\mathbf{x}) = \mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}]$$

$$\mathbb{E}_{x,y}\left[\left(y-h(x)\right)^{2}\right] = \iint \left(y-h(x)\right)^{2} p(x,y) dx dy$$

$$\mathbb{E}_{x,y}\left[\left(y-h(x)\right)^{2}\right] = \iint \left(y-h(x)\right)^{2} p(x,y) dx dy$$

For each x, separately minimize loss since h(x) can be chosen independently for each different x:

$$\frac{\delta \mathbb{E}_{x,y} \left[\left(y - h(x) \right)^2 \right]}{\delta h(x)} = -\int 2(y - h(x)) p(x,y) dy = 0$$

$$\mathbb{E}_{x,y}\left[\left(y-h(x)\right)^{2}\right] = \iint \left(y-h(x)\right)^{2} p(x,y) dx dy$$

For each x, separately minimize loss since h(x) can be chosen independently for each different x:

$$\frac{\delta \mathbb{E}_{x,y} \left[\left(y - h(x) \right)^2 \right]}{\delta h(x)} = -\int 2 \left(y - h(x) \right) p(x,y) dy = 0$$

$$\Rightarrow h(x) = \frac{\int y p(x,y) dy}{\int p(x,y) dy} = \frac{\int y p(x,y) dy}{p(x)} = \int y p(y|x) dy = \mathbb{E}_{y|x} \left[y \right]$$

$$\mathbb{E}_{x,y}\left[\left(y-h(x)\right)^{2}\right] = \iint \left(y-h(x)\right)^{2} p(x,y) dx dy$$

For each x, separately minimize loss since h(x) can be chosen independently for each different x:

$$\frac{\delta \mathbb{E}_{x,y} \left[\left(y - h(x) \right)^2 \right]}{\delta h(x)} = -\int 2 \left(y - h(x) \right) p(x,y) dy = 0$$

$$\Rightarrow h(x) = \frac{\int y p(x,y) dy}{\int p(x,y) dy} = \frac{\int y p(x,y) dy}{p(x)} = \int y p(y|x) dy = \mathbb{E}_{y|x} [y]$$

$$\Rightarrow h^*(\mathbf{x}) = \mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}]$$

$$(x,y) \sim P$$

h(x): minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(\mathbf{x})) = \mathbb{E}_{\mathbf{x},y}[(f_{\mathcal{D}}(\mathbf{x}) - y)^2]$$
 Expected loss

$$(x,y)\sim P$$

h(x): minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(x)) = \mathbb{E}_{x,y}[(f_{\mathcal{D}}(x) - y)^2]$$
 Expected loss

$$= \mathbb{E}_{x,y} \left[(f_{\mathbb{D}}(x) - h(x) + h(x) - y)^2 \right]$$

$$(x,y) \sim P$$

h(x): minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(\mathbf{x})) = \mathbb{E}_{\mathbf{x},y}[(f_{\mathcal{D}}(\mathbf{x}) - y)^2]$$

$$= \mathbb{E}_{x,y} \left[(f_{\mathbb{D}}(x) - h(x) + h(x) - y)^{2} \right]$$

Expected loss

$$= \mathbb{E}_{x} \left[\left(f_{\mathcal{D}}(x) - h(x) \right)^{2} \right] + \mathbb{E}_{x,y} \left[\left(h(x) - y \right)^{2} \right]$$
$$+ 2 \mathbb{E}_{x,y} \left[\left(f_{\mathcal{D}}(x) - h(x) \right) \left(h(x) - y \right) \right]$$

$$(x,y)\sim P$$

h(x): minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(\boldsymbol{x})) = \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}}[(f_{\mathcal{D}}(\boldsymbol{x}) - \boldsymbol{y})^2]$$

$$= \mathbb{E}_{x,y} \left[(f_{D}(x) - h(x) + h(x) - y)^{2} \right]$$

Expected loss

$$= \mathbb{E}_{x} \left[\left(f_{\mathcal{D}}(x) - h(x) \right)^{2} \right] + \mathbb{E}_{x,y} \left[\left(h(x) - y \right)^{2} \right]$$
$$+ 2 \mathbb{E}_{x,y} \left[\left(f_{\mathcal{D}}(x) - h(x) \right) \left(h(x) - y \right) \right]$$

$$\mathbb{E}_{\mathbf{x}}\left[\left(f_{\mathcal{D}}(\mathbf{x}) - h(\mathbf{x})\right)\mathbb{E}_{\mathbf{y}|\mathbf{x}}\left[\left(h(\mathbf{x}) - \mathbf{y}\right)\right]\right]$$

$$(x,y) \sim P$$

h(x): minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(\mathbf{x})) = \mathbb{E}_{\mathbf{x},y}[(f_{\mathcal{D}}(\mathbf{x}) - y)^2]$$

$$= \mathbb{E}_{x,y} \left[(f_{\mathbb{D}}(x) - h(x) + h(x) - y)^{2} \right]$$

Expected loss

$$= \mathbb{E}_{\mathbf{x}} \left[\left(f_{\mathcal{D}}(\mathbf{x}) - h(\mathbf{x}) \right)^{2} \right] + \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\left(h(\mathbf{x}) - \mathbf{y} \right)^{2} \right]$$
$$+ 2 \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\left(f_{\mathcal{D}}(\mathbf{x}) - h(\mathbf{x}) \right) \left(h(\mathbf{x}) - \mathbf{y} \right) \right]$$

$$\mathbb{E}_{\boldsymbol{x}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x})-h(\boldsymbol{x})\right)\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[\left(h(\boldsymbol{x})-\boldsymbol{y}\right)\right]\right]$$

$$(x,y) \sim P$$

h(x): minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(x)) = \mathbb{E}_{x,y}[(f_{\mathcal{D}}(x) - y)^{2}]$$

$$= \mathbb{E}_{x,y}[(f_{\mathcal{D}}(x) - h(x) + h(x) - y)^{2}]$$

$$= \mathbb{E}_{x}[(f_{\mathcal{D}}(x) - h(x))^{2}] + \mathbb{E}_{x,y}[(h(x) - y)^{2}]$$

$$+ 0$$

noise

Noise shows the irreducible minimum value of the loss function

Expectation of true error

$$E_{true}(f_{\mathbb{D}}(x)) = \mathbb{E}_{x,y}[(f_{\mathbb{D}}(x) - y)^{2}]$$
$$= \mathbb{E}_{x}[(f_{\mathbb{D}}(x) - h(x))^{2}] + noise$$

Expectation of true error

$$E_{true}(f_{\mathcal{D}}(\mathbf{x})) = \mathbb{E}_{\mathbf{x},y}[(f_{\mathcal{D}}(\mathbf{x}) - y)^{2}]$$
$$= \mathbb{E}_{\mathbf{x}}[(f_{\mathcal{D}}(\mathbf{x}) - h(\mathbf{x}))^{2}] + noise$$

$$\mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{\boldsymbol{x}} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) \right)^{2} \right] \right]$$

$$= \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) \right)^{2} \right] \right]$$

We now want to focus on $\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x})-h(\boldsymbol{x})\right)^{2}\right]$.

The average hypothesis

$$\bar{f}(\mathbf{x}) \equiv E_{\mathcal{D}}[f_{\mathcal{D}}(\mathbf{x})]$$

$$\bar{f}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} f_{\mathcal{D}^{(k)}}(\mathbf{x})$$

K training sets (of size N) sampled from $P(x, y): \mathcal{D}^{(1)}, \mathcal{D}^{(2)}, ..., \mathcal{D}^{(K)}$

Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) + \bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) + \bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) \right)^{2} + \left(\bar{f}(\boldsymbol{x}) - h(\boldsymbol{x}) \right)^{2} \right]$$

Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) + \bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})\right)^{2} + \left(\bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

Bias and variance

$$\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})\right)^{2}\right] + \left(\bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}$$

$$\operatorname{var}(\boldsymbol{x})$$

$$\operatorname{var}(\boldsymbol{x})$$

$$\operatorname{bias}(\boldsymbol{x})$$

$$\mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(f_{\mathcal{D}}(\mathbf{x}) - h(\mathbf{x}) \right)^{2} \right] \right] = \mathbb{E}_{\mathbf{x}} \left[\operatorname{var}(\mathbf{x}) + \operatorname{bias}(\mathbf{x}) \right]$$

$$= \operatorname{var} + \operatorname{bias}$$

Example: sin target

$$var = \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) \right)^{2} \right] \right]$$

bias =
$$\mathbb{E}_{\mathbf{x}}[\bar{f}(\mathbf{x}) - h(\mathbf{x})]$$

More complex $\mathcal{H} \Rightarrow$ lower bias but higher variance

[Y.S. Abou Mostafa, 2012]

Example: sin target

- ▶ Only two training example N = 2
- Two models used for learning:

$$\mathcal{H}_0$$
: $f(x) = b$

$$\mathcal{H}_1$$
: $f(x) = ax + b$

• Which is better \mathcal{H}_0 or \mathcal{H}_1 ?

Learning from a training set

[Y.S. Abou Mostafa, 2012]

Variance \mathcal{H}_0

[Y.S. Abou Mostafa, et. al]

Variance \mathcal{H}_1

[Y.S. Abou Mostafa, et. al]

Which is better?

[Y.S. Abou Mostafa, 2012]

Lesson

Match the **model complexity**to the data sources
not to the complexity of the target function.

Expected training and true error curves

Errors vary with the number of training samples

expected true error: $\mathbb{E}_{\mathcal{D}}[E_{true}(f_{\mathcal{D}}(x))]$ expected training error: $\mathbb{E}_{\mathcal{D}}[E_{train}(f_{\mathcal{D}}(x))]$

[Y.S. Abou Mostafa, 2012]

Regularization

[Y.S. Abou Mostafa, 2012]

Regularization: bias and variance

[Y.S. Abou Mostafa, 2012]

ResourcWinner of \mathcal{H}_0 , \mathcal{H}_1 , and \mathcal{H}_1 with regularization es

[Y.S. Abou Mostafa, 2012]

Regularization and bias/variance

[Bishop]

Learning curves of bias, variance, and noise

[Bishop]

Bias-variance decomposition: summary

- The noise term is unavoidable.
- The terms we are interested in are bias and variance.
- The approximation-generalization trade-off is seen in the bias-variance decomposition.

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 3.2.
- Yaser S. Abu-Mostafa, Malik Maghdon-Ismail, and Hsuan Tien Lin, "Learning from Data", Chapter 2.3, 3.2, 3.4.
- Course CE-717, Dr. M.Soleyman

